Verwendung von Cookies

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.

suchen

Problemzone Wärmebrücke Vereinfachtes Berechnungsverfahren ermöglicht genaue Ermittlung

Wärmebrücken sind örtlich begrenzte Störungen in der Gebäudehüllen. Sie verursachen lokal hohe Wärmeverluste. Die Energieverluste haben eine geringere Innenoberflächentemperatur zur Folge.

Wärmebrücken sind örtlich begrenzte Störungen in der Gebäudehüllen. Sie verursa-chen lokal hohe Wärmeverluste. Die Energieverluste haben eine geringere Innenober-flächentemperatur zur Folge. Foto: Schöck Bauteile GmbH

Konstruktion mit einer Wärmebrücke. Balkonanschluss mit Isokorb® Typ KXT30 V6 ausgeführt: In drei Schritten wird die Dämmdicke der Wand variiert, die Qualität der Dämmung der Wärmebrücke bleibt gleich. Der λ-Wert der thermischen Trennung bleibt konstant.

Konstruktion mit einer Wärmebrücke. Balkonanschluss mit Isokorb® Typ KXT30 V6 ausgeführt: In drei Schritten wird die Dämmdicke der Wand variiert, die Qualität der Dämmung der Wärmebrücke bleibt gleich. Der λ-Wert der thermischen Trennung bleibt konstant. Die Berechnung des psi-Werts wurde mit dem Wärmebrücken-Rechner von Schöck ausgeführt. Foto: Schöck Bauteile GmbH

Die Wärmedurchgangskoeffizienten ψ und χ beschreiben die Wärmeverluste durch Wärmebrücken. Die rechnerische Ermittlung dieser Kenngrößen ist ausschließlich anhand einer wärmetechnischen Finite-Element-Berechnung (FE-Berechnung) der konkret vorliegenden Wärmebrücke möglich.

Wärmebrücken sind örtlich begrenzte Störungen in der Gebäudehülle, die eine höhere Wärmeleitung verursachen als in der angrenzenden Konstruktion, z. B. ein Balkonanschluss oder Fassadenanker. Die erhöhte Wärmeleitung verursacht einen gesteigerten Energieverlust, was eine geringere Innenoberflächentemperatur zur Folge hat. Es entsteht das Risiko für Schimmelpilzbildung und gesundheitliche Gefahren sowie mögliche hygienische Probleme und Einschränkungen im Wohnkomfort. Weitere mögliche Folgen sind Tauwasserausfall und eine Schädigung der Bausubstanz. Mögliche Ursachen für Wärmebrücken können Bauteilbereiche sein, die von der ebenen Form abweichen, wie z. B. Stahlanschlüsse, die die Fassade durchdringen („materialbedingte Wärmebrücke“).

Energetischen Einfluss einer Wärmebrücke bemessen

Zur Erfassung und Beschränkung der Auswirkungen von Wärmebrücken werden die Wärmedurchgangskoeffizienten ψ und χ herangezogen, die die Wärmeverluste durch Wärmebrücken beschreiben. Die rechnerische Ermittlung dieser Kenngrößen ist ausschließlich anhand einer wärmetechnischen Finite-Element-Berechnung (FE-Berechnung) der konkret vorliegenden Wärmebrücke möglich.

Um einen ausführlichen Wärmebrückennachweis zu erhalten, wird für jede linienförmige Wärmebrücke der Wärmebrückenverlustkoeffizient ψ benötigt. Bei einem Balkonanschluss hängt diese Kenngröße von der Wandkonstruktion und den Dämmeigenschaften des verwendeten tragenden Wärmedämmelements ab. Tragende Wärmedämmelemente besitzen einen komplexen geometrischen Aufbau mit unterschiedlichen Materialien und gekrümmten Flächen. Diese können mit marktüblichen Wärmebrückenprogrammen nach DIN EN ISO 10211 oftmals nicht exakt abgebildet werden, da das zugrundeliegende Lösungsverfahren (Finite Differenzen Methode) in der Regel nur rechteckige Elementnetze zulässt.

Die Produktkenngröße, welche die Dämmeigenschaft des tragenden Wärmedämmelements beschreibt, ist die sogenannte äquivalente Wärmeleitfähigkeit λeq. Um eine einfache und dennoch genaue Abbildung des tragenden Wärmedämmelements Schöck Isokorb® und seiner Eigenschaften in diesen Programmen zu ermöglichen, hat Schöck ein vereinfachtes Berechnungsverfahren entwickelt. Dieses Verfahren wird schon lange erfolgreich angewendet und ist nun auch Bestandteil der allgemeinen bauaufsichtlichen Zulassung Z-15.7-240.

Unterschied von λ und psi

Die Wärmeleitfähigkeit λ ist die Kennzahl, die unabhängig von der Geometrie eines Bauteils seine materialbezogene Fähigkeit Wärme zu leiten, beschreibt. Während der λ-Wert eine Materialeigenschaft darstellt, ist der psi-Wert die Größe um den Energieverlust durch eine individuelle Konstruktion zu beschreiben. Der wichtigste Unterschied zwischen den beiden Größen ist, dass sich der psi-Wert mit der Konstruktion ändert. Das soll an einem Beispiel illustriert werden. Im Folgenden wird eine Konstruktion mit einer Wärmebrücke, hier mit einem Balkonanschluss, betrachtet. In drei Schritten wird die Dämmdicke der Wand exemplarisch variiert. Dabei bleibt die Qualität der Dämmung der Wärmebrücke gleich. Diese soll mit einem Isokorb® Typ KXT30 V6 ausgeführt werden, der λ-Wert der thermischen Trennung bleibt also konstant. Die Berechnung des psi-Werts wurde mit dem Schöck Wärmebrücken-Rechner durchgeführt.

An den Ergebnissen (siehe Tabelle) lässt sich feststellen, dass sich der ψ-Wert und damit der Energieverlust durch die Wärmebrücke ändert, obwohl die Ausführung der Wärmebrücke gleichgeblieben ist; lediglich die Dämmdicke der Außenwand wurde verändert. Hieran lässt sich gut erkennen, warum der ψ-Wert für eine Wärmebrücke immer nur in Abhängigkeit der umliegenden Konstruktion ermittelt werden kann. Da diese immer auch auf den Energieverlust einen Einfluss hat. Das ist somit auch die Herausforderung in der Beschaffung von ψ-Werten. Diese können somit leider nicht als Produktkennwert angegeben werden. Als Produktkenngröße kann sinnvollerweise die Materialeigenschaft λ angegeben werden. Unter deren Zuhilfenahme lässt sich ein psi-Wert ermitteln. Der Wärmebrücken-Rechner schließt die Lücke zwischen λ und ψ.

Ermittlung des ψ-Werts mit dem Wärmebrücken-Rechner

Basierend auf dem λeq-Wert des Schöck Isokorb® können mit dem Wärmebrücken-Rechner komplexe bauphysikalische Eigenschaften für eine individuelle Konstruktion ermittelt werden. Der Wärmebrücken-Rechner basiert auf dem Wärmebrückenprogramm WinIso2D und führt Berechnungen auf einem eigenen Server in Echtzeit durch (www.psi.schoeck.de). Planer können damit eine bestimmte Wärmebrücke berechnen, bei der alle relevanten bauphysikalischen Eigenschaften ermittelt werden:

  • ψ-Wert (längenbezogener Wärmedurchgangskoeffizient der Wärmebrücke),
  • Oberflächentemperaturen,
  • fRsi-Werte (Temperaturfaktor: Grenzwert, der das Risiko für Schimmelpilzbildung beschreibt),
  • Isothermen-Verlauf (graphische Darstellung der Temperaturverteilung mithilfe von Linien gleicher Temperatur) sowie
  • Protokoll und graphische Darstellung des Bauteilaufbaus und der Berechnungsergebnisse.
Downloads
Bilder in Webqualität
zip, 199,65 KB
Bilder in Printqualität
zip, 5,44 MB
Fachartikel PDF
pdf, 320,46 KB
Fachartikel unformatiert
docx, 14,47 KB
BIL_MA_Metzka--Jana-2017_16z9_FHD.jpg

Jana Metzka

PR-Referentin

Telefon: 07223 967-858

Telefax: 07223 967-7858

E-Mail: jana.metzka@schoeck.de